Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia.
نویسندگان
چکیده
BACKGROUND Preconditioning the heart before an ischemic insult has been shown to protect against contractile dysfunction, arrhythmias, and infarction. Pharmacological studies have suggested that fibroblast growth factor-2 (FGF2) is involved in cardioprotection. However, because of the number of FGFs expressed in the heart and the promiscuity of FGF ligand-receptor interactions, the specific role of FGF2 during ischemia-reperfusion injury remains unclear. METHODS AND RESULTS FGF2-deficient (Fgf2 knockout) mice and mice with a cardiac-specific overexpression of all 4 isoforms of human FGF2 (FGF2 transgenic [Tg]) were compared with wild-type mice to test whether endogenous FGF2 elicits cardioprotection. An ex vivo work-performing heart model of ischemia was developed in which murine hearts were subjected to 60 minutes of low-flow ischemia and 120 minutes of reperfusion. Preischemic contractile function was similar among the 3 groups. After ischemia-reperfusion, contractile function of Fgf2 knockout hearts recovered to 27% of its baseline value compared with a 63% recovery in wild-type hearts (P<0.05). In FGF2 Tg hearts, an 88% recovery of postischemic function occurred (P<0.05). Myocardial infarct size was also reduced in FGF2 Tg hearts compared with wild-type hearts (13% versus 30%, P<0.05). There was a 2-fold increase in FGF2 release from Tg hearts compared with wild-type hearts (P<0.05). No significant alterations in coronary flow or capillary density were detected in any of the groups, implying that the protective effect of FGF2 is not mediated by coronary perfusion changes. CONCLUSIONS These results provide evidence that endogenous FGF2 plays a significant role in the cardioprotective effect against ischemia-reperfusion injury.
منابع مشابه
Effects of Taurine, Sestrin 2 and Phyllanthin on coronary artery diseases
Heart failure is a growing epidemic in the worldwide. Atherosclerosis is a major mechanism of cardiovascular disease including myocardial infarction and peripheral arterial disease. Moreover, it causes many diseases and deaths around the world. Atherosclerosis, like coronary artery disease (CAD), is associated with inflammation and oxidative stress. The current article has been collected the s...
متن کاملCardiomyocyte-specific overexpression of NO synthase-3 protects against myocardial ischemia-reperfusion injury.
OBJECTIVE The protective effect of NO synthase-3 (eNOS)-derived NO in limiting myocardial ischemia-reperfusion (MI-R) injury is well established. We reported previously that systemic genetic overexpression of eNOS attenuates MI-R injury. The purpose of the current study was to investigate tissue-specific genetic overexpression of the human eNOS gene. METHODS AND RESULTS To accomplish this, we...
متن کاملHeart‐Specific Overexpression of Choline Acetyltransferase Gene Protects Murine Heart Against Ischemia Through Hypoxia‐Inducible Factor‐1α–Related Defense Mechanisms
BACKGROUND Murine and human ventricular cardiomyocytes rich in acetylcholine (Ach) receptors are poorly innervated by the vagus, compared with whole ventricular innervation by the adrenergic nerve. However, vagal nerve stimulation produces a favorable outcome even in the murine heart, despite relatively low ventricular cholinergic nerve density. Such a mismatch and missing link suggest the exis...
متن کاملThe protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2.
Elucidation of protective mechanisms against ischemia-reperfusion injury is vital to the advancement of therapeutics for ischemic heart disease. Our laboratory has previously shown that cardiac-specific overexpression of fibroblast growth factor-2 (FGF2) results in increased recovery of contractile function and decreased infarct size following ischemia-reperfusion injury and has established a r...
متن کاملS100A4 protects the myocardium against ischemic stress.
BACKGROUND Myocardial infarction is followed by cardiac dysfunction, cellular death, and ventricular remodeling, including tissue fibrosis. S100A4 protein plays multiple roles in cellular survival, and tissue fibrosis, but the relative role of the S100A4 in the myocardium after myocardial infarction is unknown. This study aims to investigate the role of S100A4 in myocardial remodeling and cardi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 108 25 شماره
صفحات -
تاریخ انتشار 2003